A specific type of pressure washer utilizes a belt and pulley system to transfer power from the motor to the pump. This configuration involves a separate engine, typically gasoline-powered, connected to a high-pressure pump via a belt. The engine’s crankshaft rotates, driving the belt, which in turn spins the pump’s input shaft, generating the necessary pressure for cleaning applications.
This mechanical power transmission method offers several advantages. The reduction in rotational speed provided by the pulley system allows for increased torque, enabling the pump to generate higher pressure levels. The belt also acts as a shock absorber, protecting both the engine and the pump from potential damage caused by sudden pressure spikes or debris. This configuration is often preferred for heavy-duty cleaning tasks and commercial applications due to its durability and potential for high output pressures. Historically, this design was the predominant method used in pressure washers before the advent of direct-drive systems, and it remains a popular choice for applications requiring robust performance.